A Pexider difference associated to a Pexider quartic functional equation in topological vector spaces
نویسندگان
چکیده
منابع مشابه
On Pexider Differences in Topological Vector Spaces
and Applied Analysis 3 It follows from 2.1 and 2.6 that 2f ( x y 2 ) − g x − h(y) 2f ( x y 2 ) − g(y z) − h x − z − [ 2f (x z 2 ) − g 2z − h x − z ] [ 2f ( y 2z 2 ) − g 2z − h(y) ] − [ 2f ( y 2z 2 ) − g(y z) − h z ] [ 2f (x z 2 ) − g x − h z ] ∈ 3V − 2V 2.7 for all x, y ∈ X with ‖x‖ ‖y‖ < d. Hence, by 2.1 and 2.7 , we have 2f ( x y 2 ) − g x − h(y) ∈ 3V − 2V 2.8 for all x, y ∈ X. Letting x 0 y ...
متن کاملHyers–ulam–rassias Stability of a Generalized Pexider Functional Equation
In this paper, we obtain the Hyers–Ulam–Rassias stability of the generalized Pexider functional equation ∑ k∈K f(x+ k · y) = |K|g(x) + |K|h(y), x, y ∈ G, where G is an abelian group, K is a finite abelian subgroup of the group of automorphism of G. The concept of Hyers–Ulam–Rassias stability originated from Th.M. Rassias’ Stability Theorem that appeared in his paper: On the stability of the lin...
متن کاملOn the Superstability of the Pexider Type Trigonometric Functional Equation
We will investigate the superstability of the hyperbolic trigonometric functional equation from the following functional equations: fx y ± gx − y λfxgy andfx y ± gx − y λgxfy, which can be considered the mixed functional equations of the sine function and cosine function, the hyperbolic sine function and hyperbolic cosine function, and the exponential functions, respectively.
متن کاملThe Superstability of the Pexider Type Trigonometric Functional Equation
The aim of this paper is to investigate the stability problem for the Pexider type (hyperbolic) trigonometric functional equation f(x + y) + f(x + σy) = λg(x)h(y) under the conditions : |f(x + y) + f(x + σy)− λg(x)h(y)| ≤ φ(x), φ(y), and min{φ(x), φ(y)}. As a consequence, we have generalized the results of stability for the cosine(d’Alembert), sine, and the Wilson functional equations by J. Bak...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Involve, a Journal of Mathematics
سال: 2013
ISSN: 1944-4184,1944-4176
DOI: 10.2140/involve.2013.6.505